Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phosphorylation of the amino-terminus of the AGC kinase Gad8 prevents its interaction with TORC2.

Identifieur interne : 000A45 ( Main/Exploration ); précédent : 000A44; suivant : 000A46

Phosphorylation of the amino-terminus of the AGC kinase Gad8 prevents its interaction with TORC2.

Auteurs : Wei Du [Royaume-Uni] ; Gabriella M. Forte [Royaume-Uni] ; Duncan Smith [Royaume-Uni] ; Janni Petersen [Australie]

Source :

RBID : pubmed:26935949

Descripteurs français

English descriptors

Abstract

Cell proliferation, metabolism, migration and survival are coordinated through the tight control of two target of rapamycin (TOR) kinase complexes: TORC1 and TORC2. Here, we show that a novel phosphorylation of fission yeast Gad8 (AGC kinase) on the evolutionarily conserved threonine 6 (Thr6) prevents the physical association between Gad8 and TORC2. Accordingly, this block to protein interactions by Gad8 Thr6 phosphorylation decreases TORC2-controlled activation of Gad8. Likewise, phosphorylation of Gad8 Thr6, possibly by PKC, prevents the association of Gad8 with TORC2 thereby increasing TORC2 activity, because it reduces Gad8-mediated feedback inhibition of TORC2. Consistently, the introduction of a Gad8 T6D mutant, that mimics phosphorylation, increased TORC2 activity. Increased PKC(Pck2) expression prevented Gad8-TORC2 binding and so reduced the TORC2-mediated phosphorylation of Gad8 serine 546 that activates Gad8. Interestingly, independent of the Ser546 phosphorylation status, Gad8 Thr6 phosphorylation is important for remodelling the actin cytoskeleton and survival upon potassium ion and heat stresses. In contrast, Ser546 phosphorylation is required for the control of G1 arrest, mating, cell length at division and vascular size. Finally, these findings reveal a novel mode of TORC2 activation that is essential for cell survival following stress.

DOI: 10.1098/rsob.150189
PubMed: 26935949
PubMed Central: PMC4821236


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phosphorylation of the amino-terminus of the AGC kinase Gad8 prevents its interaction with TORC2.</title>
<author>
<name sortKey="Du, Wei" sort="Du, Wei" uniqKey="Du W" first="Wei" last="Du">Wei Du</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT</wicri:regionArea>
<orgName type="university">Université de Manchester</orgName>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="nation">Angleterre</region>
<region nuts="2" type="region">Grand Manchester</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Forte, Gabriella M" sort="Forte, Gabriella M" uniqKey="Forte G" first="Gabriella M" last="Forte">Gabriella M. Forte</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT</wicri:regionArea>
<orgName type="university">Université de Manchester</orgName>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="nation">Angleterre</region>
<region nuts="2" type="region">Grand Manchester</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Smith, Duncan" sort="Smith, Duncan" uniqKey="Smith D" first="Duncan" last="Smith">Duncan Smith</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biological Mass Spectrometry, Cancer Research UK Manchester Institute, The Paterson Building, Wilmslow Road, Manchester M20 4BX, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Biological Mass Spectrometry, Cancer Research UK Manchester Institute, The Paterson Building, Wilmslow Road, Manchester M20 4BX</wicri:regionArea>
<wicri:noRegion>Manchester M20 4BX</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Petersen, Janni" sort="Petersen, Janni" uniqKey="Petersen J" first="Janni" last="Petersen">Janni Petersen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, South Australia 5001, Australia South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide, South Australia 5000, Australia janni.petersen@flinders.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, South Australia 5001, Australia South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide, South Australia 5000</wicri:regionArea>
<orgName type="university">Université de Manchester</orgName>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="nation">Angleterre</region>
<region nuts="2" type="region">Grand Manchester</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26935949</idno>
<idno type="pmid">26935949</idno>
<idno type="doi">10.1098/rsob.150189</idno>
<idno type="pmc">PMC4821236</idno>
<idno type="wicri:Area/Main/Corpus">000A90</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A90</idno>
<idno type="wicri:Area/Main/Curation">000A90</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A90</idno>
<idno type="wicri:Area/Main/Exploration">000A90</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phosphorylation of the amino-terminus of the AGC kinase Gad8 prevents its interaction with TORC2.</title>
<author>
<name sortKey="Du, Wei" sort="Du, Wei" uniqKey="Du W" first="Wei" last="Du">Wei Du</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT</wicri:regionArea>
<orgName type="university">Université de Manchester</orgName>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="nation">Angleterre</region>
<region nuts="2" type="region">Grand Manchester</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Forte, Gabriella M" sort="Forte, Gabriella M" uniqKey="Forte G" first="Gabriella M" last="Forte">Gabriella M. Forte</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT</wicri:regionArea>
<orgName type="university">Université de Manchester</orgName>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="nation">Angleterre</region>
<region nuts="2" type="region">Grand Manchester</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Smith, Duncan" sort="Smith, Duncan" uniqKey="Smith D" first="Duncan" last="Smith">Duncan Smith</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biological Mass Spectrometry, Cancer Research UK Manchester Institute, The Paterson Building, Wilmslow Road, Manchester M20 4BX, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Biological Mass Spectrometry, Cancer Research UK Manchester Institute, The Paterson Building, Wilmslow Road, Manchester M20 4BX</wicri:regionArea>
<wicri:noRegion>Manchester M20 4BX</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Petersen, Janni" sort="Petersen, Janni" uniqKey="Petersen J" first="Janni" last="Petersen">Janni Petersen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, South Australia 5001, Australia South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide, South Australia 5000, Australia janni.petersen@flinders.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, South Australia 5001, Australia South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide, South Australia 5000</wicri:regionArea>
<orgName type="university">Université de Manchester</orgName>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="nation">Angleterre</region>
<region nuts="2" type="region">Grand Manchester</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Open biology</title>
<idno type="eISSN">2046-2441</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actins (metabolism)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (MeSH)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Phosphorylation (MeSH)</term>
<term>Potassium (metabolism)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Interaction Maps (MeSH)</term>
<term>Protein Kinase C (metabolism)</term>
<term>Protein-Serine-Threonine Kinases (chemistry)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Schizosaccharomyces (chemistry)</term>
<term>Schizosaccharomyces (cytology)</term>
<term>Schizosaccharomyces (metabolism)</term>
<term>Schizosaccharomyces pombe Proteins (chemistry)</term>
<term>Schizosaccharomyces pombe Proteins (metabolism)</term>
<term>Stress, Physiological (MeSH)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Threonine (chemistry)</term>
<term>Threonine (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Actines (métabolisme)</term>
<term>Cartes d'interactions protéiques (MeSH)</term>
<term>Complexe-2 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Potassium (métabolisme)</term>
<term>Protein-Serine-Threonine Kinases (composition chimique)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéine kinase C (métabolisme)</term>
<term>Protéines de Schizosaccharomyces pombe (composition chimique)</term>
<term>Protéines de Schizosaccharomyces pombe (métabolisme)</term>
<term>Schizosaccharomyces (composition chimique)</term>
<term>Schizosaccharomyces (cytologie)</term>
<term>Schizosaccharomyces (métabolisme)</term>
<term>Stress physiologique (MeSH)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Thréonine (composition chimique)</term>
<term>Thréonine (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Protein-Serine-Threonine Kinases</term>
<term>Schizosaccharomyces pombe Proteins</term>
<term>Threonine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Actins</term>
<term>Multiprotein Complexes</term>
<term>Potassium</term>
<term>Protein Kinase C</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Schizosaccharomyces pombe Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
<term>Threonine</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 2</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Schizosaccharomyces</term>
<term>Thréonine</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Actines</term>
<term>Complexes multiprotéiques</term>
<term>Potassium</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéine kinase C</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Schizosaccharomyces</term>
<term>Sérine-thréonine kinases TOR</term>
<term>Thréonine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Phosphorylation</term>
<term>Protein Binding</term>
<term>Protein Interaction Maps</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cartes d'interactions protéiques</term>
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Liaison aux protéines</term>
<term>Phosphorylation</term>
<term>Stress physiologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cell proliferation, metabolism, migration and survival are coordinated through the tight control of two target of rapamycin (TOR) kinase complexes: TORC1 and TORC2. Here, we show that a novel phosphorylation of fission yeast Gad8 (AGC kinase) on the evolutionarily conserved threonine 6 (Thr6) prevents the physical association between Gad8 and TORC2. Accordingly, this block to protein interactions by Gad8 Thr6 phosphorylation decreases TORC2-controlled activation of Gad8. Likewise, phosphorylation of Gad8 Thr6, possibly by PKC, prevents the association of Gad8 with TORC2 thereby increasing TORC2 activity, because it reduces Gad8-mediated feedback inhibition of TORC2. Consistently, the introduction of a Gad8 T6D mutant, that mimics phosphorylation, increased TORC2 activity. Increased PKC(Pck2) expression prevented Gad8-TORC2 binding and so reduced the TORC2-mediated phosphorylation of Gad8 serine 546 that activates Gad8. Interestingly, independent of the Ser546 phosphorylation status, Gad8 Thr6 phosphorylation is important for remodelling the actin cytoskeleton and survival upon potassium ion and heat stresses. In contrast, Ser546 phosphorylation is required for the control of G1 arrest, mating, cell length at division and vascular size. Finally, these findings reveal a novel mode of TORC2 activation that is essential for cell survival following stress. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26935949</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>12</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">2046-2441</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2016</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Open biology</Title>
<ISOAbbreviation>Open Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Phosphorylation of the amino-terminus of the AGC kinase Gad8 prevents its interaction with TORC2.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1098/rsob.150189</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">150189</ELocationID>
<Abstract>
<AbstractText>Cell proliferation, metabolism, migration and survival are coordinated through the tight control of two target of rapamycin (TOR) kinase complexes: TORC1 and TORC2. Here, we show that a novel phosphorylation of fission yeast Gad8 (AGC kinase) on the evolutionarily conserved threonine 6 (Thr6) prevents the physical association between Gad8 and TORC2. Accordingly, this block to protein interactions by Gad8 Thr6 phosphorylation decreases TORC2-controlled activation of Gad8. Likewise, phosphorylation of Gad8 Thr6, possibly by PKC, prevents the association of Gad8 with TORC2 thereby increasing TORC2 activity, because it reduces Gad8-mediated feedback inhibition of TORC2. Consistently, the introduction of a Gad8 T6D mutant, that mimics phosphorylation, increased TORC2 activity. Increased PKC(Pck2) expression prevented Gad8-TORC2 binding and so reduced the TORC2-mediated phosphorylation of Gad8 serine 546 that activates Gad8. Interestingly, independent of the Ser546 phosphorylation status, Gad8 Thr6 phosphorylation is important for remodelling the actin cytoskeleton and survival upon potassium ion and heat stresses. In contrast, Ser546 phosphorylation is required for the control of G1 arrest, mating, cell length at division and vascular size. Finally, these findings reveal a novel mode of TORC2 activation that is essential for cell survival following stress. </AbstractText>
<CopyrightInformation>© 2016 The Authors.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Du</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Forte</LastName>
<ForeName>Gabriella M</ForeName>
<Initials>GM</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Duncan</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Biological Mass Spectrometry, Cancer Research UK Manchester Institute, The Paterson Building, Wilmslow Road, Manchester M20 4BX, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Petersen</LastName>
<ForeName>Janni</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, South Australia 5001, Australia South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide, South Australia 5000, Australia janni.petersen@flinders.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>11178</GrantID>
<Agency>Cancer Research UK</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>C40377/A12840</GrantID>
<Agency>Cancer Research UK</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Open Biol</MedlineTA>
<NlmUniqueID>101580419</NlmUniqueID>
<ISSNLinking>2046-2441</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000199">Actins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029702">Schizosaccharomyces pombe Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2ZD004190S</RegistryNumber>
<NameOfSubstance UI="D013912">Threonine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C476401">Gad8 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076225">Mechanistic Target of Rapamycin Complex 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.13</RegistryNumber>
<NameOfSubstance UI="D011493">Protein Kinase C</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>RWP5GA015D</RegistryNumber>
<NameOfSubstance UI="D011188">Potassium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000199" MajorTopicYN="N">Actins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076225" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011188" MajorTopicYN="N">Potassium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060066" MajorTopicYN="Y">Protein Interaction Maps</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011493" MajorTopicYN="N">Protein Kinase C</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029702" MajorTopicYN="N">Schizosaccharomyces pombe Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013912" MajorTopicYN="N">Threonine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Gad8</Keyword>
<Keyword MajorTopicYN="N">PKC</Keyword>
<Keyword MajorTopicYN="N">SGK1</Keyword>
<Keyword MajorTopicYN="N">Schizosaccharomyces pombe</Keyword>
<Keyword MajorTopicYN="N">TORC2</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>3</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26935949</ArticleId>
<ArticleId IdType="pii">rsob.150189</ArticleId>
<ArticleId IdType="doi">10.1098/rsob.150189</ArticleId>
<ArticleId IdType="pmc">PMC4821236</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Cell Sci. 1999 Oct;112 ( Pt 20):3569-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10504305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Jun 16;22(12):3073-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Aug 1;289(31):21727-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24928510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4475-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(2):e17175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21386895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2010 Nov 23;20(22):1975-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21035342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2010 Mar 1;123(Pt 5):777-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(12):e81364</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24349059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 1977 Jul;107(2):377-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">872891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2013 Jan 1;304(1):C49-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23015548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2007 Dec;12(12):1357-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18076573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 9;276(10):7027-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11096119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Jun 1;122(Pt 11):1737-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19417002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2014 Dec 1;464(2):281-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25222560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2013 Nov 25;203(4):595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24247430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Dec 1;125(Pt 23):5840-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22976295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1985 Apr;75:357-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4044680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Nov;9(11):1263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17952063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2008 Jul-Aug;43(4):277-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18756382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2013 Jan 7;23(1):42-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23200991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1994 May;107 ( Pt 5):1131-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7929623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014;9(1):e88020</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24498240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Feb;20(4):1254-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10648611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2013 Aug;41(4):896-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23863152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Open. 2012 Sep 15;1(9):884-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23213482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1998 Jun 1;141(5):1217-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9606213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2004 Nov;6(11):1122-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15467718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2010 Jan;11(1):9-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20027184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Apr;27(8):3154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17261596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Jan 1;351(6268):25-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26721988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatology. 2009 May;49(5):1525-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19296465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Oct;10(10):1347-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7900424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 Nov 5;8(22):1211-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9811607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2006 Mar;18(3):276-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16109477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2014 Jul;24(7):400-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24698685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Physiol Biochem. 2003;13(1):41-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12649601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2012 Nov 26;199(5):831-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23185032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 6;276(27):24736-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11335722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Biol. 2011 Nov;1(3):110007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2010 Apr 30;106(8):1319-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20431074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):274-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22500797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2008 Feb 1;7(3):358-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18235227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2009 Dec;34(12):620-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19875293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hormones (Athens). 2013 Apr-Jun;12(2):160-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23933686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1993 Jan 15;123(1):127-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8422996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Jul;15(7):3697-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7791776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1998 Apr;111 ( Pt 7):867-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9490631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2008 Feb 15;410(1):19-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18215152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2004 Jun;4(6):1633-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15174133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Nov;23(21):7794-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14560023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Jul 27;14(14):1296-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15268862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Endocrinol. 2007 Mar 30;268(1-2):30-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17335965</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Grand Manchester</li>
</region>
<settlement>
<li>Manchester</li>
</settlement>
<orgName>
<li>Université de Manchester</li>
</orgName>
</list>
<tree>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Du, Wei" sort="Du, Wei" uniqKey="Du W" first="Wei" last="Du">Wei Du</name>
</region>
<name sortKey="Forte, Gabriella M" sort="Forte, Gabriella M" uniqKey="Forte G" first="Gabriella M" last="Forte">Gabriella M. Forte</name>
<name sortKey="Smith, Duncan" sort="Smith, Duncan" uniqKey="Smith D" first="Duncan" last="Smith">Duncan Smith</name>
</country>
<country name="Australie">
<region name="Angleterre">
<name sortKey="Petersen, Janni" sort="Petersen, Janni" uniqKey="Petersen J" first="Janni" last="Petersen">Janni Petersen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A45 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A45 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26935949
   |texte=   Phosphorylation of the amino-terminus of the AGC kinase Gad8 prevents its interaction with TORC2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26935949" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020